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Objectives of this work
• measure aerosol-water interactions in two regimes

– concentrated aqueous solutions

– dilute aqueous solutions

• “aggregate” properties are needed as constraints 
for global climate model parameterizations of 
aerosol-cloud interactions.

aerosol hygroscopic growth (uptake of water at controlled 
humidity <100% RH) – we use a hygroscopicity TDMA

CCN activity (water vapor supersaturation required to 
become a cloud droplet) – we use a CCN counter
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Dp1, Dp3 = 20, 40, 60, 80, 100 nm

Dp2 = 30 values, growth factors 
from 0.7 to 3.0

SS = 9 values between 0.15% and 
1.0%

complete characterization every 
30 min 

We can cycle faster. 
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What information can we get from these 
measurements?

Directly measured:
• CCN properties and hygroscopic growth
• mixing state
• droplet growth kinetics

Inferred properties:
• Characterization of the aerosols chemical composition 

(soluble fraction, organic molecular weight and solubility). 
• Water vapor uptake coefficient
• Chemical aging of the aerosol

These properties are in an ideal “format” for GCM 
assessments, and for constraining/developing 

parameterizations of aerosol-cloud interactions.



Focus on size-resolved CCN measurements
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Express measurements in terms of an Express measurements in terms of an ““activated fractionactivated fraction””



CCN Activation CurvesCCN Activation Curves
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Activation curves can vary Activation curves can vary 
significantly throughout a daysignificantly throughout a day

Activation curves change also 
with dry particle size
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What the Activation Curves tell usWhat the Activation Curves tell us
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What Activation Curves tell usWhat Activation Curves tell us
They can quantify the chemical heterogeneity of the CCN

From Köhler Theory:

Normalized to remove
the unactivated particles
from the calculation

Assume the particles are 
composed of a soluble and 
insoluble mixture.
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Dp is constant, the sigmoid describes the distribution of critical supersaturations
for that size



The sigmoid then becomes:

From which we can derive a volume fraction distribution:
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Result: Soluble Fraction Result: Soluble Fraction 
Distribution for each particle sizeDistribution for each particle size

Activation curves give us AMAZING insight into the aerosol!Activation curves give us AMAZING insight into the aerosol!

The sigmoid describes a distribution of soluble fractions for the CCN 
active compounds. This is a direct measure of mixing state and aging

Lance et al., Lance et al., in preparationin preparation
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Observations

Characterizing Growth KineticsCharacterizing Growth Kinetics
• Instrument sizes the droplets that form in the instrument.
• This can be used to obtain kinetic growth information.
• Droplet size sensitive to composition, mixing state and other 
processes that affect growth kinetics (water vapor uptake). 

• Modeling aerosol growth gives POWERFUL information
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Growth Kinetics: CCN Instrument ModelGrowth Kinetics: CCN Instrument Model

Roberts and Roberts and NenesNenes (2005); Lance et al. (2006)(2005); Lance et al. (2006)



Application: Application: MegacitiesMegacities Impacts on Regional Impacts on Regional 
and Global Environments (MIRAGE)and Global Environments (MIRAGE)

T1 Ground Site, University T1 Ground Site, University 
of of TecamacTecamac
Our data: March 16Our data: March 16thth--3131stst

Measuring the pollution Measuring the pollution 
outflow from Mexico Cityoutflow from Mexico City
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20-30% of days



Biomass burning, dust, Biomass burning, dust, 
vehicle exhaust, sheep, vehicle exhaust, sheep, 
pollutionpollution…“…“the worksthe works””



Derived vs. measured mass fractions

The idea works! We can get PDF’s of composition vs. size…. Very 
powerful characterization of chemical ageing and heterogeneity.
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Comparison of measurements
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• Hygroscopic growth factor (GF) is consistent with inferred soluble fraction.
• CCN mixing state (width of the soluble fraction PDF) is correlated with the GF 
distributions.  

Lance et al., in preparation



Droplet Growth Kinetics
Low S → slower uptake.
High S → faster uptake.

Organic films? 
Dissolution kinetics?

Very important 
implications for droplet 

formation & indirect 
forcing estimates
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TakeTake--home messageshome messages
Size resolved CCN and hygroscopicity measurements provide 
very powerful and unique information on

• Mixing state - I (completely hygroscopic/hydrophobic)
• Mixing state - II (soluble fraction distributions)
• Aging of the CCN
• Characterization of growth kinetics
• Unique insights on impacts of organics on CCN
• Very fast time resolution

This analysis and measurement strategy needs to be done 
for all sites that have CCN and/or hygroscopicity
measurements.

DOE-ARM with its infrastructure and external collaborations 
(GaTech?) can accomplish these goals.
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