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SRT: Why?!

Mean fluxes are relevant for climate
studies

Mean fluxes depend on basic cloud
statistics (mean, variance,...)

Cloud statistics can be obtained
from observations (ARM, NASA)



SRT Eguation

Parameters of SRT are random
functions

Different statistical cloud models have
been suggested

Mean radiative properties can be
obtained after numerical or analytical
averaging



SRT: Numerical Averaging

cloud fields
Perform deterministic RT ‘/
calculations for each field RT

Obtain statistics (e.g.
mean radiative fluxes)

Generate ensemble of 3D i"i i/

Statistics



Surrogate Clouds Generating
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Numerical Averaging

Advantage:

Statistics of radiation can be
obtained for given surrogate clouds

Disadvantage:

Computationally expensive



Analytical Averaging

Analytical equations link statistics
of clouds and radiation

Advantage:
Computationally efficient

Disadvantage:

Relatively simple cloud models



Analytical Averaging: Models
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Cloud Models: Markovian
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Analytical Averaging: Example

Ensemble-averaged Intensity (Direct):

1(s)=1(0)| fexp(—s/l)+(1—f)exp-s/l,) |

where f, 1;, |, are functions of
2 optical ( o clear sky, cloudy)
2 geometrical (CF, correlation scale)



Markovian Approach: Validation*
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Discrepancy: Possible Reasons

Vertical variability of clouds
Anisotropy of cloud fields

Limited ability of model and
observations to capture them



Markovian Approach:
Generalization™

Represent 3D broken clouds as set of

Interrelated cloud layers:
- Inverse-exponential expression

Improved ability of model to capture
vertical/horizontal variability of clouds:

- random/maximum overlaps o
- correlation scales in x-, y- and z-directions

* Kassianov, 2003; Kassianov et al., 2003; 2005



Problem

Fluxes are sensitive to 3D cloud statistics:
- vertical overlap, horizontal anisotropy, ...

Cloud models capable of incorporating
these 3D statistics

However, cloud observations are 2D:
- horizontal fields (satellite data)

- time-height cross-cut (radar data)



Spatial Variability: Example™

Cumulus clouds Stratocumulus clouds
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Fluxes represent hemispherical (3D) observations
To predict fluxes accurately, we need 3D cloud statistics

* Kassianov et al., 2005



Potential AVA Applications

Provide 3D statistics of cloud fields:
- vertical overlap, horizontal anisotropy, ...

Apply AVA-derived cloud statistics to
Improve/develop cloud models

Validate model predictions (e.g., mean
fluxes) with observations
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3D Cloud Statistics & AVA
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How sensitive IS
overlap parameter to
viewing direction?

How strong Is
variability of
directional CF?

Effective SW/LW CF
vs directional CF



® Stochastic modeling, like painting, Is
an art; requiring proper balance
between composition and ablllty to
.convey a message.

e Cloud-statistics, obtained from AVA,
may add bright and jocund colors to
the painting.

Graeme Stephens cloud painting




Thank youl!
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