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Figure 3. Fractional distribution of principal species (per cent) of GISS annual-mean aerosol climatology



SW and LW aerosol radiative forcings at TOA and BOA for current climate relative to pre-industrial conditions. 



Figure 1. Qualitative agreement for the overall annual mean aerosol
optical depth at 0.55 μm compiled from different datasets. Numbers at
top right corner represent the area weighted global means.



 

 
 
Figure 15. Annual mean GCM aerosol optical depth for clear-sky (left) and cloudy-sky (right) conditions. 
Numbers in the upper right corner of the plots are area weighted global mean optical depths at 0.55 m. 
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Figure 4. Seasonal dependence of area weighted overall monthly mean
l ti l d th f diff t d t D t (l ftaerosol optical depth from different data sources. Data over ocean (left

panel) and over land (right panel) have been averaged over 45°S − 45°N
and over available data of the respective instruments.



2.7
2.53.0

              
2.4

2.5

2.6

10.0 10.2 10.4 10.6 10.8 11.0
0.00.51.01.52.02.53.0

1.5 1

Land

10.0 10.2 10.4 10.6 10.8 11.0

1

1.25

an
d 

(4
5o S

−4
5o N

)

0.6

0.8

ce
an

 (
45

o S
−4

5o N
) Ocean

0.5

0.75

GCM
TERRA
AQUA
AERONET

AVHRR

m
 e

xp
on

en
t o

ve
r 

la
n

0.4

0.6

 e
xp

on
en

t o
ve

r 
oc

ea

 J F M A M J J A S O N D 
0

0.25

AVHRR
POLDER1
POLDER2

A
ng

st
ro

m
 

 J F M A M J J A S O N D 
0

0.2

A
ng

st
ro

m
 e

 J F M A M J J A S O N D  J F M A M J J A S O N D 

Figure 5. Same as Fig. 4, but the averaged data are for the Ångström
exponent.
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S l i bilit h f GCM l ( S th A i ) i t dSeasonal variability phase error of GCM aerosol (over South America) associated 
with organic carbon and black carbon source specification.
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Adjustment of GCM aerosol component optical depths (in Central Pacific) 
to match seasonal variability of AQUA measurements.y Q
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Figure 6. Ångström exponent dependence on aerosol size, computed for
nominal refractive index of 1.5 + 0.003 i, for spectral interval 0.55 to 0.7
μm versus effective radius for different size distributionsμm versus effective radius for different size distributions.



Adjustment of GCM aerosol component optical depths at each grid box (size kept fixed)  to match 
optical depth and seasonal variability of AQUA observations.p p y
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Figure 14.  January and July monthly- mean single scattering albedo for the GISS ModelE aerosol climatology for
1990 (left panels).  TOMS Aerosol Index (AI) (right panels) has been re -scaled as (1 Š 0.1×AI) to roughly resemble 
the GCM single scattering albedo.   Aerosol single scattering albedo measured loc ally at AERONET network sites is 
shown in the center panels Numbers appearing in the upper right corners are area weighted global mean valuesshown in the center panels. Numbers appearing in the upper right corners are area weighted global mean values.
 
 



Seasonal height variability of GCM aerosols expressed as mean pressure (mb).



Sample TOMS Aerosol Index (left), and preliminary GCM simulated TOMS AI (right).



Hygroscopic aerosol size and (dry) mass fraction as a function of relative humidity relative humidity.  
The size, density, and refractive index of hygroscopic aerosols follows a hysteresis loop according to 
laboratory measurements by Tang and Munkelwitz [1991 1994 1996] With rising relative humiditylaboratory measurements by Tang and Munkelwitz [1991, 1994, 1996].  With rising relative humidity, 
a dry aerosol rapidly becomes a solute particle at the deliquescence point (filled circles), dropping 
from the equilibrium curve as RH decreases below the crystallization point (filled squares).



Relative humidity constrained tracks, according to laboratory measurements by Tang and Munkelwitz 
[1991, 1994, 1996], in Mie scattering extinction efficiency parameter map for selected dry sulfate seed 
sizes White squares depict selected dry aerosol (200 to 1000 nm) seed sizes Dashed arrow lines showsizes.  White squares depict selected dry aerosol (200 to 1000 nm) seed sizes.  Dashed arrow lines show 
deliquescence transitions at RHD=0.80.  Dotted arrow lines depict crystallization points at RHC=0.38.  
White circles designate relative increase in solute aerosol size with increasing relative humidity.



Relative humidity constrained tracks, according to laboratory measurements by Tang and Munkelwitz 
[1991, 1994, 1996], in Mie scattering asymmetry parameter map for selected dry sulfate seed sizes.  White 
squares depict selected dry aerosol (200 to 1000 nm) seed sizes Dashed arrow lines show deliquescencesquares depict selected dry aerosol (200 to 1000 nm) seed sizes.  Dashed arrow lines show deliquescence 
transitions at RHD=0.80.  Dotted arrow lines depict crystallization points at RHC=0.38.  White circles 
designate relative increase in solute aerosol size with increasing relative humidity.



Representation of solute particle radiative parameters (extinction efficiency and asymmetry parameter) as 
a weighted average of dry aerosol (solid red) and pure water (blue) aerosol properties.  The dashed red 
line depicts the RH=0.38 crystallization point for sulfate aerosols.  The black lines depict equilibrium RH 
dependent Q(R) for specified dry aerosol seed sizes.  Since Q is the same (along horizontal dashed lines), 
the asymmetry parameter of the solute aerosol can be precisely matched as a weighted average of the 
pure dry and pure water aerosol values of the appropriate sizes, as indicated.  



Spectral validation of the pure dry/pure water (PDPW) weighted average representation of solute 
aerosol radiative properties.  The (reference) red curve utilizes Mie scattering parameters computed 
for the appropriate solute spectral refractive index at RH=0.38.  The black line depicts the spectral 
albedo computed with the averaged PDPW radiative parameters.  Thus, the radiative properties of a 
300 nm dry sulfate aerosol, which becomes a 347 nm solute particle at RH=0.38, can be accurately 
represented as the weighted average of a pure dry 287 nm particle and a 476 nm pure water aerosol. 


