


Seasonality and Inter-annual Variability of
Arctic Haze
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“How Do Aerosols Penetrate Storm Track?”
- A Conceptual Picture of Meridional Transport

— Mean Circulation
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LW Emissivity as a function of LWP and
Effective Radii
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In theory, two types
of LW indirect
effects:

1st smaller radii;

| 2nd higher LWP.

Surface LW

| downward cloud
1 forcing of ~65 W m-2

suggested by
SHEBA.



Model Physics and Chemistry in AM3

Convection Parameterization

Move from the relaxed Arakawa-Schubert (RAS) in
AM2 to the Donner deep convection scheme (Donner,
1993) and the University of Washington (UW) shallow
convection scheme (Bretherton et al., 2003). By
providing in-plume updraft velocity, the latter two are
ideal for implementing aerosol/cloud microphysics.
Aerosol-Liquid Cloud Interactions

A prognostic scheme of cloud droplet number
concentration (Ming et al., 2007) with an explicit
treatment of aerosol activation at cloud base (Ming et
al., 2006).

*Online aerosol transport and tropospheric and
stratospheric chemistry




The Second Climate Mode (SM) of the North
Atlantic — European Sector
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Correlation Between Simulated Arctic Haze
and SM
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Difference in Sulfate Column Burden
between SM(+) and SM(-)
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850-hPa Mean Winds and SLP Anomalies in

SM(+) and SM(-) Years

SM(+)
| | | " L, . |
e S I I R R R B B e B A A A .
_______ PR W W WL . T W T T 1 T T A A A O AR B B A B B R R
NEERESE RSN NN NN NNy
=l TEPEL PR R ELrrrerre R
= e el !¢

St ST

S o R T P

-70 -35 0 35 70

90

-20

R

SAONAARARARANAA N LAY
R RN N W Y

ST
e

R P Y
A A AAAPAAAALT
e n AP

-15 -10 -5 -2 0

10

15

20



90

20

Position of Storm Track (Precipitation as
Proxy) in Difference Phases of SM




Correlation Between EMEP (European Monitoring and
Evaluation Program)-measured sulfate and ERA40-
based SM Indices
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Difference in Cloud Droplet Number
Concentrations between SM(+) and SM(-)
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Difference in LWP between SM(+) and SM(-)
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Difference in Surface LW Downward Flux

(+) and SM(-)
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Correlation Between Simulated Surface LW
Downward Flux and SM

15 [ [ [ [
0F d -

LW Flux Anomaly (W m™)

Normalized Index



Correlation Between BSRN (Baseline Surface Radiation
Network)-measured Surface LW Downward Flux and
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ERA40-based Long-term Trend of SM
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Conclusions

*The Second Mode, though less prominent than
NAO, is key to modulating long-range transport of
aerosols to the Arctic;

A positive phase of SM doubles the amount of
Arctic haze, and results in significant increase in
surface LW downward flux;

*This mechanism is important for understanding
Arctic climate variability and change.

elce Nuclei — a major wild card ... (Prenni et al.,
2007)
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Long-range Transport of Mid-latitude Air
Pollutants to the Arctic

Mean winter
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of the

Arctic | %
Front b, N e L \

North 4 = SNGLEe. 0 North
Pacific § I ¢ Atlantic
Ocean £ PRt S, i ea)

= Arctic Front Winter _ _
Major south to north air transport

Arclic Front Summer routes into the Arctic



Locations of Long-term Arctic Monitoring Stations

UusS
Canada
Denmark
Norway
Finland
Russia




Model Deficiency in Simulating Seasonality

Chemistry Transport Models (w/ reanalyzed meteorology) and
General Circulation Models participating in the Hemispheric
Transport of Air Pollutant (HTAP) project.
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Arctic Haze Affects Climate in Multiple Ways
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1st LW Indirect Effect of Arctic Haze (Smaller

Radii)
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A Prognostic Scheme of Cloud Droplet Number
Ming et al. (JAS, 64, 1189, 2007)

Prognostic Variables:

*Cloud liquid condensate (l; kg water/kg air)
*Cloud amount (a; fraction)

*Cloud droplet number (n; droplet #/kg air)

_— i

Large-scale Convection Advection and
(stratiform clouds) (shallow cumulus) turbulent transport

*Source and sink terms for cloud liquid condensate, amount
and droplet number are fully consistent;

*Droplet activation at cloud base is parameterized following
Ming et al. (JAS, 63, 1348, 2006), and is determined by aerosol
properties (chemical composition and size) and model-derived
updraft velocity;

*Multiple aerosol types (sulfate, OC and sea salt) are treated as
CCN;

*Evolution of droplets interacts with dynamics and
meteorology.




Transport of European Tracer for NAO+ and NAO- Conditions
(December, January, February composites for 1980 - 1993)

NAO-, 8 — 10 days

* After 8 to 10 days, most of the European
tracer is found North of the Arctic circle for
the NAO+ case.

» Surface concentrations in the Arctic winter
are enhanced during NAO+ phases due to
changes in transport from Europe and
North America.
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Eckhardt et al., ACP, 2003




The Second Climate Mode (SM) of the North
Atlantic — European Sector
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Correlation Between Simulated Arctic Haze
and SM
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Difference in Sulfate Column Burden
between SM(+) and SM(-)
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850-hPa Mean Winds and SLP Anomalies in
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Position of Storm Track (Precipitation as
Proxy) in Difference Phases of SM
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Change in SM in Response to Aerosol Effects
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Change in Stationary Eddy Stream Function in
Response to Aerosol Effects

_ CNTL

90N

Pl aerosols °

T T T I
90S 60S 305 0 30N 60N 90N

| I E——
-30. -20. -10. -5.0 -2.0 0.0 2.0 5.0 10. 20. 30.
L 1 A.EHO .- CNTL L L L L

PD minus Pl

T T T T
90S 60S 308 0 30N 60N 90N

| SIS E——
-6.0 -4.0 -2.0 -1.0-0.50 0.00.50 1.0 2.0 4.0 6.0



