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Why do aerosol-cloud interactions
matter?

1. Clouds have a significant impact on Earth’s radiation budget

Shallow clouds significantly increase the SW reflectance
relative to the dark underlying ocean but radiate in the LW at
approximately the surface temperature

2. Aerosol may influence albedo and precipitation
Enhanced cloud reflectance

Suppression of warm rain
Aerosol effects on deep convection ??




Simple Constructs

We have (somewhat artificially) separated aerosol effects on
clouds into:

Albedo effect (more aerosol = smaller droplets = brighter clouds;
ceteris paribus)

Lifetime effect (more aerosol = smaller droplets = less coalescence
less rain =2 longer lifetime)

Semi-direct effect (more absorbing aerosol = stabilization = less cloud)

Glaciation effect

Riming effect



Despite decades of research, we still do not have a robust
understanding of aerosol effects on clouds and precipitation

This is at least in part due to our imperfect observational
tools...

but,



Hypothesis

e Aerosol effects are hard to detect and quantify
because the aerosol-cloud system is buffered

— Microphysical buffering
— Macrophysical buffering
— Strong responses

Focus here is on shallow convection (warm clouds)




Buffering

Feedback: output of a system modifies the input

: feedback —J

Buffering: Response of a system to a forcing is weaker than would have
been expected had internal mechanisms not been accounted for
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Microphysical Buffering

e More aerosol 2 more drops = lower S = less activation

e More soluble aerosol - more drops =2 lower S

E.g.: afactor of 2x in the [CCN]
at S = S”yields ~ 15% change in
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Microphysical Buffering contd..

e Albedo Susceptibility
dA  A(-A)
dN, 3N,

Clouds with A=0.5 are most
susceptible to aerosol
perturbations

(vis-a-vis albedo)
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Microphysical Buffering contd..

Parcel model

e Precipitation Susceptibility
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din(R)/dIn(A/)

Ro,

A-Train Results
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Parcel model

Extrapolation to Tropical Oceans l
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Where on Earth will aerosol reduce precipitation?
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Macrophysical Buffering

e Cloud Lifetime

e Cloud Deepening



Lifetime of Shallow Cumulus

Clouds modeled by
large eddy simulation

Clouds in Houston sampled by
aircraft; CIRPAS/CalTech/NOAA :

Jiang, Feingold, et al. 2008



Cloud Lifetime
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The lifetime effect:

e Aerosol does not appear to have
any effect on cloud lifetime;

e Enhanced evaporation may even
decrease lifetime

Small et al. 2009
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Strong Response

Albedo

60 km x 60 km

Closed-cell

(non-

Albedo ~ 0.6 |— high aerosol

precipitating)

More aerosol =2
more cloudiness
+ self-
organization

Open-cell

Albedo~0.2 |—— low aerosol

(precipitating) WRF LES simulations:

Garay et al. 2004, MISR Satellite images

Wang and Feingold 2009



Cloud Deepening

High aerosol concentration

Deeper clouds

Cooling More evaporation

—

. Warming

Less precipitation More precipitation

More cloud-active aerosol

The deepening effect: local inhibition of precipitation helps
precondition the environment for deeper convection;
—> Clouds rain more

Stevens and Feingold, 2009
Nuijens and Stevens, 2009



Are ship tracks converting
open cells to closed cells?

implications

engineering

Geo

Stevens and Feingold 2009
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Conclusions

The Aerosol-Cloud-Precipitation system is often
buffered

— Strong perturbations are “absorbed” by the system

— Aerosol effects on clouds are nuanced
— Responses are regime-dependent

The best chance of observing aerosol effects is in well-

defined dynamical regimes where meteorological
“noise” is reduced



Absorbing Aerosol

Non-monotonic response of
cloud optical depth to increase in

smoke aerosol
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Absorbing Aerosol

Non-monotonic response of
cloud optical depth to increase in

smoke aerosol
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Ambiguous Responses from Models

Stratocumulus Regime
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