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The treatment of ice microphysics has a large impact on
model simulations, e.g., precipitation, through interactions
with dynamics, radiation, etc...

...but 1s complicated by a wide range of particle

characteristics.




Pristine ice crystals,
grown by diffusion of
water vapor

Snowflakes, grown by
aggregation
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Rimed ice crystals
(accretion of
supercooled cloud

Graupel (heavily rimed
ice crystals)




Most schemes used today include the logic of “cloud ice-snow-
graupel/hail” to represent different size/shape particles.

Such a logic follows approaches proposed 20+ years ago
(Rutledge and Hobbs, Lin et al.) that transplanted ideas from
warm-rain microphysics into ice physics.




Rutledge and Hobbs, JAS 1984
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FI1G. 1. Schematic depicting the cloud and precipitation processes included
in the model for the study of narrow cold-frontal rainbands.




Most schemes used today include the logic of “cloud ice-snow-
graupel/hail” to represent ice processes.

Such a logic follows approaches proposed 20+ years ago
(Rutledge and Hobbs, Lin et al.) that transplanted ideas from
warm-rain microphysics into ice physics.

Not really!

-For warm rain, clear separation does exist between cloud water
ana drizzle/rain, cloud water grows by diffusion of water vapor,
drizzle/rain grows by collision/coalescence. For ice, the
boundaries are not obvious and transitions from one category
to another take place through a combination of diffusion,
aggregation, or riming (accretion of liquid water) growth.

-The ice scheme should produce various types of ice (cloud ice,
snow, graupel) just p){ the physics of particle growth;
partitioning ice particles a priori into separate categories
Introduces unphysical “conversion rates” and involves
“threshold behavior” for various parameters (e.g.,
sedimentation velocity).



Conceptual model of particle evolution during growth
(similar to Heymsfield 1982)

Stage 1: Unrimed crystal

* Particle dimension D and
mass increase by
vapor deposition

Stage 2: Partially-rimed crystal

* Particle dimension increases
by vapor deposition

» Mass increases by vapor
deposition and riming

Stage 3: Graupel

* Particle dimension increases
by vapor deposition and
riming

» Mass increases by vapor
deposition and riming




A new two-moment three-variable ice scheme: No separate
categories for ice, instead growth history determines ice type
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The new scheme is tested for the Jan 18 —
Feb 3, 2006, period of TWP-ICE.

2D version of EULAG (Smolarkiewicz and Margolin
1997), Dx =1 km

97 vertical levels, stretched vertical coordinate

Initial and forcing conditions same as TWP-ICE
intercomparison for cloud resolving models (ARM
variational analysis, Xie et al. 2009)




Microphysical sensitivity tests

Mass-size and projected area-size relationships
for unrimed crystals

Aggregates of unrimed assemblages of crystals
(Baseline)

Plate with sector branches (P1b)
Heymsfield et al. (2007) (HO7)




Conceptual model of particle evolution during growth
(similar to Heymsfield 1982)

Stage 1: Unrimed crystal

* Particle dimension D and
mass increase by
vapor deposition

Stage 2: Partially-rimed crystal

* Particle dimension increases
by vapor deposition

» Mass increases by vapor
deposition and riming
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* Particle dimension increases
by vapor deposition and
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» Mass increases by vapor
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Mass-size and projected area-size relationships
for fully rimed particles

Graupel from Heymsfield and Kajikawa (1987)
(Baseline)

3 x baseline graupel density (High density)
Hail, spheres with bulk density of 0.8 g cm (Hail)

From A. Heymsfield




Conceptual model of particle evolution during growth
(similar to Heymsfield 1982)
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Results




Surface Precip Rate

10F T HO7 ' .
81 P1b ]
[SS :_ _ _ _ Hail _:
= Dense Graupel ]
E 4@ . 7
B Baseline ]
21 E
20 25 30
Observed Fraction of Day
Model
Model Surface Downwelling SW
1000 ' ' ' .
800 _T:
1
600 g
fi

300
250

200
£ 150
100

50

BABS=SnERRRNRRRRREE

Fraction of Day

TOA Upwelling LW (OLR)

L1 |:‘)-| IIH}I

20 25 30

Fraction of Day




Pressure (mb)
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Summary

A new microphysics scheme has been developed that predicts
rime mass fraction and moves away from traditional approach of
a priori categorization into different species (cloud ice, snow,
graupel).

Overall, preliminary results for TWP-ICE appear reasonable,
with some notable biases relative to obs/retrievals (excessive
high cloud fraction, too large ice and liquid water contents).

Model exhibits some sensitivity to ice microphysics parameters
tested, especially graupel density. Increased density leads to
reduced ice water content at upper levels, reduced anvil
coverage, and reduced mass flux. Results suggest need to
better represent graupel density.

Need to compare ice microphysical sensitivities w/ other model
sensitivities (rain microphysical parameters, 2D vs. 3D,
horizontal/vertical resolution, etc).




