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Objectives

• Ice formation – can “conventional” ice 
nucleation mechanisms explain observed ice 
concentrations?

• Ice crystal habit – even given one habit 
(dendrites), how do variations in capacitance, 
mass- and area-size (maximum length) 
influence simulated cloud microphysics?
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Aircraft observations: Flight 31
D > 100 um D > 100 um
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Model Description: Dynamics

• 3.2 x 3.2 x 1.5 km, doubly periodic BCs
• 64 x 64 x 100 mesh, 50 m x 50 x 15 m uniform grid
• LES code [Stevens and Bretherton, 1997]
• dynamic Smagorinsky subgrid model [Kirkpatrick et al., 

2006]
• domain translation with mean winds
• fixed surface temperature, similarity sensible and 

latent heat fluxes
• advective flux and subsidence profiles from ECMWF
• 2-stream radiative transfer, 44 wavelength bands [Toon 

et al., 1989]



Model Description: Microphysics

• size resolving, bin scheme [Jensen et al., 1994; 
Ackerman et al., 1995; Fridlind et al., 2007]

• diagnostic aerosols: 32 bins, D = 20 nm–1 µm
• liquid: 32 bins, D = 1.5 µm–2.8 mm
• ice: 32 bins, Dmax = 2 µm–9 cm
• also keep track of aerosols embedded in drops and ice
• processes: drop activation, heterogeneous ice 

formation, sedimentation, collision-coalescence
• ice fall speeds and collision-coalescence efficiencies 

based on mass, maximum dimension, projected area, 
and aspect ratio relations [Böhm, 1989, 1992a-c, 1994, 
1999, 2004]



Ice crystal habit parameterization
Very pristine case (compared 
to M-PACE), dendritic shapes 
predominate at all heights

• M-D, A-D relations from 
Mitchell (1996); P1d crystal
• aspect ratio derived from 
Mitchell relations assuming 
constant ice density
• shape factor (C/r) –
theoretical formulation for 
oblate spheroids
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Model initialization
• idealized sounding 

derived from aircraft 
observations and ARM 
sounding data

• ECMWF derived LS 
forcing (S. Xie)



Simulation design

Different treatments of ice nuclei in separate 
runs:

•diagnostic ice nuclei in deposition mode only 
(Morrison and Zuidema, 2008), all IN easily 
activated 

•prognostic ice nuclei in deposition, 
condensation, contact, and immersion modes: 
10 bins, most to least easily nucleated



OBSERVATIONS

SIMULATION RESULTS

4L-1 diagnostic IN

Analysis: randomly sample (in 
horizontal space and time) model 
domain using altitudes of airborne 
measurements 

Summary:
• Ice number concentration too great
• Ice water contents also too great
• LWC and drop conc. about right

=> decrease IN concentration 



OBSERVATIONS

SIMULATION RESULTS

2L-1 diagnostic IN

Summary:
• Ice number concentration still too 
great
• Ice water contents also
• LWC and drop conc. slightly increase



OBSERVATIONS

SIMULATION RESULTS

Prognostic IN treatment
• 4L-1 IN 
• Ice-liquid collisions have surprisingly 
large impact on LWC and ice 
concentrations, but CPI images do not 
show any significant riming, so for now 
we turn off ice-liquid and ice-ice 
collisions entirely.

Summary:
• ice number concentrations about right
• ice crystals fall speed too small; full BL 
depletion in > 1 day
• IWC too small
• droplet concentration and LWC too 
great

=> increase ice growth – go back to 
fixed shape factor  



OBSERVATIONS

SIMULATION RESULTS

Prognostic IN treatment
• 4L-1 IN 
• no ice-liquid and ice-ice collisions
• C/r fixed at 0.5 (Westbrook, 2008)

Summary:
• ice number concentration and IWC 
about right
• drop concentration and LWC still too 
great

=> decrease LS moisture advection



OBSERVATIONS

SIMULATION RESULTS

Prognostic IN treatment
• 4L-1 IN 
• no ice-liquid and ice-ice collisions
• C/r fixed at 0.5 (Westbrook, 2008)
• no LS moisture advection

Summary:
• ice number concentration and IWC 
about right
• drop concentration and LWC also very 
close to the observed

=> RIGHT ANSWER?



Concluding remarks
• Haven’t used particle spectra yet – “right” answer for 

wrong reasons? What about D<100 um?
• Flight 31: pristine case, predominantly dendrites (small 

fall speeds), high IN concentrations => most favorable 
conditions for models to match the observed ice 
concentrations. If they cannot, then what? 
Uncertainties in IN measurements? Alternative IN 
sources or ice nucleation mechanisms?

• Comparisons with radar observations – not only 
constraining fall speeds but also comparing simulated 
and observed cloud structure: correlations between 
dynamics and microphysics. How different is the cloud 
over Barrow hours after the aircraft observations were 
taken?



Additional slides



OBSERVATIONS

SIMULATION RESULTS

Diagnostic IN treatment
 2L-1 IN
 4L-1 IN 
 2L-1 IN; no ice-ice and ice-liquid 
collisions
 4L-1 IN; no ice-ice and ice-liquid 
collisions
 Prognostic IN treatment
 4L-1 IN 
 4L-1 IN; no ice-ice and ice-liquid 
collisions
 4L-1 IN; no ice-ice and ice-liquid 
collisions; S fixed
 4L-1 IN; no ice-ice and ice-liquid 
collisions; no LS moisture advection
 4L-1 IN; no ice-ice and ice-liquid 
collisions; no LS moisture advection; 
fixed S
 4L-1 IN; no ice-ice and ice-liquid 
collisions; spheres



Mechanism Temp Supersat Dependence Description

Primary modes

contact -4 > T > -14 - flin(T) drop + INaer -> ice

condensation -8 > T > -22 0 < Sw flin(T) Inaer -> ice

deposition -10 > T 0 < Si < 0.2 fexp(T) Inaer -> ice

immersion -10 > T > -24 - flin(T) drop + Indrop -> ice

Multiplication

rime-splintering -3 > T > -8 - flin(T) crystal per 250 collisions

drop shattering 0 > T - Ddrop> 50 um multiplication factor = 2

ice fragmentation 0 > T - flin(Δmom2) up to 20-60 fragments

Other processes

evaporation nuclei 0 > T S < Sw - 1/104 drops -> INaer

charge 
enhancement

0 > T - f(Ddrop) evaporate retains charge

evaporation 
freezing

0 > T S < Sw - “some” drops just “freeze”
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