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Motivation

+ ".. forward scattering of - “A bias from
the laser light from clouds and cloud scattering
aerosols increases the path introduces an
length, thus making the surface error to surface
appear farther from the height change
satellite." detection due to
changes in cloud
cover."

»  The residual bias "imposed
by undetected cloud scattering
is at the decimeter, not
centimeter level.”

ICESat IT Science
Team report, 2008

ICESat IT workshop report, 2007
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Clouds missed by the 1064 nm channel
(from Spinhirne et al., 2005)
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Scattering order: forward-scattering and
isotropic phase functions

COD=0.2
Cloud base =0.5 km
Cloud thickness = 0.5 km
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Effect of particle shape on the range delay
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Scattering angle (")
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sAj What scattering angles need to be accounted

for as a function of FOV and CBH
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If clouds are between 0.5 and 1 km, for FOV=100urad 6<7° is important while for FOV=300urad 6<20°
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Blowing Snow
Why should we care about
blowing snow?

from Steve Palm's ICESat Science Team presentation

- Antarctic Ice Sheet Mass Balance

» Forward Scattering Effect on Altimetry
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Blowing Snow Frequency October 1 - 24,
2003

from Steve Palm's ICESat Science Team presentation
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The uncertainties in range delay for
FOV=160 prad
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Expected path delay

(A ) = [[] puhy D) po(2)Ps(1rg ) L(Dy 7 s Aw) di dzdlh,

*p,(A,7) is the pdf of
cloud base A, and COD r;

*p,(1) is the pdf of COD t
undetected by the 1064-
nm channel;

*p5(r¢) is the pdf of
effective radius r for
thin transparent clouds;

L(Ay. s Ay) is the MC
calculated range delay as
a function of Ay.
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Particle shape at South Pole Station

from Lawson et al., JAM 06
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F1G. 5. Histogram of ice crystal habits observed at SPS during the period of 1-8 Feb 2001.
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A Particle shape and size at South Pole Station
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Particle size and shape for thin polar clouds

* in-situ measurements of droplet size distribution are rare in polar regions,
esp. in Antarctica (there are some ground-based measurements, though).

* the differences between cirrus clouds in the tropics and in the polar regions
are poorly understood;

-ice particle size strongly correlates with T; at least for tropical clouds, cold
very thin clouds may have very small ice crystals;

‘problems with small ice crystals (D < 50 um): shattering of large particles
overestimates concentration of small ice crystals;

* remote sensing retrievals have large uncertainties, esp. for very thin clouds;

‘CALIPSO's Infrared Imaging Radiometer (IIR) retrieves R ¢ but not yet
available. Its accuracy over polar region clouds is unknown;

‘Lidar/Radar/IR retrievals of particle size is, perhaps, the most promising;
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Data

« TCESat
- MODIS

- CALIPSO

or Greenland, East and West Antarctica




" clouds missed by the 1064-nm channel

CF(%) Thin(%) Missed(%)

EA: 34 56 22 East Antarctic (GLAS L2A Campaign)
WA: 59 55 11 3500 o5
GR: 60 42 31 : : ! !
3000 | "
120 3
AN
2500 -
1064 nm g
? 2000 missed thin clouds H 15 o
D
The relative frequency of %J_ o
COD retrieved from the © 1500 10 =
532-nm channel together L . o
with clouds detected by the 2
1000
1064-nm channel. Red 7
curve is the cumulative 100
distribution function of thin 500 —
transparent clouds missed

by the 1064-nm channel. 0

0 0.2 0.4 0.6 0.8 1

Cloud Optical Depth
Nov 12, 2008 Alexander Marshak 15




GLAS data: CBH vs COD

Based on GLAS L2a campaign (Oct. 2003)
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GLAS data: CBH vs COD

Based on GLAS L2a campaign (Oct. 2003)
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GLAS data: CBH 532nm vs 1064nm

Based on GLAS L2a campaign (Oct. 2003)

— East Antarctic(532um)
— East Antarctic(1064um)

One layer cloud CBH (Campaign L2A)
CODz20.2
Bin width =100 m 7

4000 6000 8000 10000
Cloud Base Height (m)

COD<«0.2

300 | | | |
. — East Antarctic(532um)
— East Antarctic(1064um)
250 |
One layer cloud CBH (Campaign L2A)
200 1.02COD 22.0
Bin width =100 m 7

150

%

100

50

d | | | r_;..
0 2000 4000 6000 8000 10000
Cloud Base Height (m)

1<COD<2

Nov 12, 2008 Alexander Marshak 18



MODIS data: R4 vs CTT
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MODIS data: COD vs CTT
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Conclusions

* Properties of the forward-scattering phase function peak are the
greatest unknown;

- Existing remote-sensing data on ice particle size have large
uncertainties; not much ground-based measurements and rare in-situ
observations;

- Very preliminary calculations based on ICESat, CALIPSO and MODIS
data estimate range delay as 5+2 cm for FOV=300 purad and 0.7+0.5 cm
for FOV=100 prad;

*To reduce the uncertainties we suggest
- Yo measure the forward scattering properties directly
- o use two FOVs

- The returned energy from one- and two-scatterings order photons
can be well approximated by simple analytical expressions based on RT
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Back-up slides




delay for two FOVs (100 & 300 prad)
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New suggestions

Direct measurements of forward scattering properties

Two-FOVs system




Dual FOV
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£\ Measuring the forward scattering properties:
ground validation campaign?

SAM measures the
radiance of the solar disk
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.7\ Importance of particle shape: ice retrievals
V with different microphysical assumptions

Bimodal Monomodal
Courtesy of Dave Mitchell

26 43 60 78 96 113 130
Effective Diameter Dgrr (um) :

B 047 086 11.03-um Composite

Nov 12, 2008 Alexander Marshak 27



o.& Particle shape is important but poorly known!
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Phase function and its cumulative
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