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Motivation

it models * A well-known problem in

(CRMs) traditional global climate model’s
convection parameterization is
the lack of the transition from
dry to shallow non-precipitating

| cumulus, then to deep

| precipitating convection.

sunrise T noon —P» sunset

parametrizations

(SCMs)  a * Most of our insights on the
I transition from shallow to deep
convection has been gained
through fine-scale modeling
gr=——mr tools: cloud resolving models or
large eddy simulations.

SUnrise " noon

A land example, Figure from Guichard et al, 2004



Convection Theories

» Convection parameterizations are usually linked to 1) CAPE/CIN 2) Large-
scale ascent (Omega) and 3) surface fluxes and so on.

 Some new mechanisms on the transition from CRM/LES studies
— The role of free-troposphere humidity (Derbyshire et al, 2004 and etc.)
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Remarks

* LES are great tools, however what do observations say?

* Golden-day case study is great, however what do convection-
regime oriented statistics say?

Here, we examine ARM long-term comprehensive observations at
ARM'’s Oklahoma site. (For this study, May — August 1997-2007)
ARM'’s Oklahoma site provides: ! ! ! !
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Methodology
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» 80 days with afternoon
deep convection and 95 days
with shallow non-precipitating
cumulus

« Student t-test between the
two convection regimes (this
test tells us what conditions
favor shallow clouds going
deep or staying shallow)

* Inside deep convection
regime, examine correlation
between environmental
parameters and afternoon
rain statistics: total amount,
maximum hourly rate, onset
time, duration



Remarks on the Observational Analysis

Observations suggest that late-afternoon deep convection is associated with:

— Greater CAPE

— Greater Free-tropospheric Humidity

— Greater PBL inhomogeneity in T, q, and mesoscale wind
— Greater large-scale ascent

Before the convection begins

All theories - except surface fluxes - are confirmed! (The latent heat flux is
significantly lower on days with afternoon deep convection — probably as a
response to greater surface RH)

Two most strongest relationship shown in both t-test and correlation
examination is associated with

— Free-tropospheric humidity

— PBL inhomogeneity
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2-4 km RH and afternoon rain
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While boundary layer RH is higher, it is not as closely related to afternoon rain statistics
as 2-4 km RH. Thus 2-4 km RH appears to be MORE important than boundary layer RH.
This is consistent with previous observational studies, e.g. Holloway & Neelin, 2009



Boundary Layer Inhomogeneity

5-surface-station standard deviation

Local Standard Time (hour)

Local Standard Time (hour)

Local Standard Time (hour)

o Moist Static Energy Temperature 14 Moisture £ Mesoscle Wind
50 N K - (] (] (] (] (] L. ~1. (] (] (] (] (] L. I(ﬂ i [ (] (] (] (] (] (] L.
= e==DEEP Z 184 -
3 Ii) N M 2 15 |C_). £ 16 @_
$) 40 e==SHCU L o 1.5 4 " -g
S o g d =
» T 121 2 1.0 2 14
3 30 G S 08 o
je g 09 1 b q 1.2
@ E @ 06 1 2
W20 o 06 1 c @ 1.0
E LJ L] L] L] L] L] L] L] |- L] L] L] L] L] L] L] E 04 L] T L] L] L] L] L] v g LJ L] L] L] L] L] L] L]
0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24

Local Standard Time (hour)

Examine the cause and effect relationship with lead-lag correlation analysis
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*The precipitation slightly leads temp and wind inhomogeneity - downdrafts cause cold pools and wind gusts

*The precipitation at initial stage of deep convection is found correlated with boundary humidity inhomogeneity several hours
before precipitation begins. - larger mesoscale anomalies of moisture lead to larger precipitation rate and more convection
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Following Neggers et al 2002; Wu et al 2009



Summary & Future Work

 We use ARM observation to make assessment on several
prevailing convection theories. Our study strongly support
the role of free-tropospheric humidity and boundary layer
inhomogeneity

 These observations also support new convection
parameterizations that focus on the ability of boundary layer
air parcels to reach the level of free convection (e.g. CIN
Closures of Mapes / Bretherton). They also suggest that it
would be worthwhile to parameterize mesoscale boundary
layer inhomogeneity and its relationship to deep convection

 Composite case might need to be set up for further LES and
SCM investigations.

maybe better than “golden day”? @



