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The Dawn of Global Modeling




Ancestral Models

® The GFDL model
A First cumulus parameterization
A “Bucket” model for the land surface
A Relatively high vertical resolution
® The UCLA model
A Conservative numerical methods
A Mass-flux convection
A Predicted clouds
@® The Livermore model
A Short lifetime
A Presssure as the vertical coordinate

A Unrealistically strong horizontal smoothing
® The NCAR model
A Height as the vertical coordinate
A First version did not predict the distribution of water vapor



The 1960s




Global modeling in the 60s

® Purely academic
® Modest funding
¢ Finite differences everywhere
® First coupled ocean-atmosphere model
e Early studies of predictability

® First work on data assimilation



Global modeling in the 70s

, "“

e More global modeling centers are set up

e First simulations of annual cycles
«/GTobal NWP begins
® Vector computing
l e More simulations of global warming
-

o “Climate simulation” usually means a perpetual
January with prescribed SSTs

e Cloud feedbacks are identified as a key issue

e Satellite data increases in importance for both
NWP and climate model evaluation



During the 1980s

Hilding Sundqvist argues for predicting cloud water and ice.
Coupled ocean-atmosphere models become more mature.
The CCM is born.

Global warming becomes a political cottage industry.
Land-surface modeling gets a higher profile.

The spectral method becomes popular.

The Earth’s radiation budget gets more attention.

True climate simulation begins.
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Global modeling in the 90s

e The Age of Intercomparison begins
e Reanalysis gets under way

e Semi-Lagrangian advection becomes popular

_ Parameterlzatlon testing becomes organlzed

~ eThec cycle gets attention R
¢ Aerosols become widely @;@@KQ@D@@@@J ?
e The IPCC begins its work

e Operational seasonal prediction with coupled
modelsibegins

¢ Globalimodeling goes corporate

2d
=)



Broader and Deeper (?)

Mid-1970s Mid-1980s Early 1990s Late 1990s Around 2000 Early 2000s
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Global modeling in the 00s
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Dynamics
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Parameterizations Increase
Conceptual Complexity

The fundamental principles of fluid dynamics, radiative transfer,
etc., are relatively simple. They apply locally, at a point.

Because of limited computer resources, AGCMs are formulated
to describe averages over finite volumes -- not at points.

Because of nonlinearity, averaging introduces new unknowns,
which are essentially statistics characterizing relevant aspects of
the unresolved processes.

The fundamental principles cannot be directly applied to
determine such statistics, except by going to higher spatial
resolution.

Statistical theories, called parameterizations, are used instead.

The need to predict statistics over (large) finite volumes is a
major and fundamental source of conceptual complexity.



Players
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Physical interactions

Conventional GCM GCRM
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The role of computing power

We can use as much as we can get -- 100 x every 10 years.

We have recently crossed a threshold.

Processor speed is how limited by energy consumption.
Increased performance through more processors:

A OK for larger ensembles with fixed resolution & run time.

A OK for more resolution with fixed run time & ensembile size.

A Not OK for longer runs with fixed resolution, e.g., ice ages.



Concluding Remarks
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Building GCMs is u
journey is theffewa

It has takenabout 50 years to reachiour currentimodeling
capability.

Computers and'GCMs co-evolve. Glirrent itechnology
trends are pushing modeisitowardsihigheriresolutions

Explicit representation of deepiconvectioniysinow possible;
and will revolutionize the field:

Nevertheless, conventional parameterizations willialways

be needed, becauseithey representiourunderstanding of
the system. ]
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