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Key Issues
• How do properties of Arctic aerosol during April differ from 

those measured by M-PACE during October? 

• To what extent do different properties of aerosol change cloud 
microphysical and macrophysical properties & surface energy 
balance?
– Distinguish between aerosol effects in clean conditions observed

during M-PACE & more polluted conditions expected in April 

• How well can cloud models & cloud parameterizations used in 
climate models simulate sensitivity of Arctic clouds & surface 
energy budget to differences in aerosol between April and 
October? 

• How well do surface measurements at NSA provide retrievals 
of aerosol, cloud, precipitation & radiative heating in Arctic 



Motivation
•Submicron arctic aerosol 
concentrations & 
compositions vary widely 
with season
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Why at NSA?
• Stratiform clouds more prevalent at NSA & they play 

important role in cloud feedbacks
• Large arctic climate sensitivity due to snow/ice albedo

feedback and cloud feedbacks more important and more 
poorly understood in Arctic

• Most studies of cloud-aerosol interactions have focused on 
warm clouds

• Cloud-aerosol interactions more complex for ice or mixed-
phase clouds
– Glaciated & mixed-phase clouds more common at NSA than other 

sites
– Aerosols have strong seasonal cycle at NSA so can look at indirect 

effects

• Colder & drier environment permits tests of radiative transfer 
codes



Aircraft Measurements: G-1/Citation/Falcon

• Temperature
• Humidity
• Total particle number
• Aerosol size distribution & hygroscopicity
• Cloud condensation & ice nuclei concentration
• Optical scattering and absorption
• Updraft velocity
• Cloud liquid water and ice water content
• Cloud droplet & crystal size distribution
• Cloud particle shape
• Cloud extinction



Surface Measurements
• Profiles of temperature, humidity and winds (radiosonde)
• Water vapor & liquid water path (microwave radiometer)
• Profiles of T, q, LWC, u, v, Tv (microwave & wind profiler)
• LWC & IWC profiles (radar)
• Aerosol backscatter & depolarization (lidar)
• AERI retrievals (T, qv, WP, τ, re for water & ice)
• Aerosol t (radiometers and sun photometer)
• Downward & upward longwave & solar radiance
• Cloud base altitude (ceilometer)
• Precipitation (hot plate rain gauge) & Snow gauge
• Aerosol scattering & absorption as f(RH)
• Total particle number, accumulation mode number & CCN 

number
• Daily chemical analysis



Applications

• CCN closure
• Droplet number closure
• Cloud water closure
• Cloud extinction closure
• CCN retrieval
• Cloud property retrievals
• Cloud modeling
• Semi-direct effect
• Relation between IN and ice crystal concentration



Cloud Modeling: M-PACE vs ISDAC

• ISDAC and M-PACE boundary conditions are likely to be 
very different because of the much more extensive 
ocean water during M-PACE

• Separate influence of different boundary conditions from 
difference aerosol by performing four simulations:
– M-PACE aerosol and boundary conditions
– M-PACE aerosol and ISDAC boundary conditions
– ISDAC aerosol and M-PACE boundary conditions
– ISDAC aerosol and boundary conditions. 
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