Warren (Oct 15/2006):

“We need perhaps 100 to 1000 times as much radiative heating
profile data ... before we can comfortably say "case closed" on our
radiation model parameterizations for climate models.”

- still very much in the validation and verification (V & V) phase

1. intrinsic V & V: models only (ICRCCM, I3RC, RAMI)

2. extrinsic V & V: models compared to observations (BBHRP)
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The existing paradigm: Intrinsic V & V

Stage 2
- verify 3D codes (non-LBL) against LBL for simple cases

- parametrization of gaseous transmittance & single-scattering properties
- verify 3D codes among themselves

Stage 3
- verify GCM-style codes against 3D codes for simple cases

- radiative transfer & parametrizations

Stage 4
- verify GCM-style codes against conditional benchmarks

Stage 5
- verify conditional benchmarks against full 3D benchmarks



e idealized or realistic atmospheres

- 3D codes to be used for verification for realistic cases
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- verifies more extensive parametrizations and simple RT
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- verifies whether 1D codes are doing as expected

- how well do they address unresolved cloud-radiation interactions?

- conditional benchmarks:
- 3D domains (from CSRMs) degenerated to 1D input

- stochastic generation of 1D field ; apply 3D code in ICA mode

full variability maximum overlap random overlap
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(for this pathological case)



SW CLOUD FORCING, REFERENCE

LW CLOUD FORCING, REFERENCE
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Upward SW flux at TOA (2D-ICA)
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Stage 1
- validate LBL codes using observations = closure for simple cases

- clear-skies + ‘homogeneous’ overcast clouds

e.g., Mlawer et al., 2000: Geophys. Res. Lett., 27, 2653-2656.
¢ Is it sufficient, and reasonable, to stop here?... intrinsic V & V thereafter?...

- observations of HR profiles (fluxes) aren’t too useful on their own...
- profiles of coincidental observed/inferred atmospheric states are needed too

RT algorithm (information) —-> HR (flux) profile

f T~

to assess this properly you need these



- under what conditions can we expect to get good obs of HRs and conditions?

1. clear-skies: ‘simple’ ascent/decent of a single plane

2. ‘nomogeneous’ clouds: ‘simple’ ascent/decent of a single plane

3. 777

suggestion: Use ARM simulator before investing too much into observations
- derived from the EarthCARE simulator

- surface; aircraft; satellite platforms

- spectral and BB fluxes and radiances (3D)
- lidar (3D multiple scattering)

- CPR

- MWR



phase |
- intrinsic model verification: ICRCCM, I3RC, RAMI

- have we reached the end... are we happy?

phase ll
- extrinsic model validation: CIRC (BBHRP)
- are HR profiles needed... have we exhausted efforts with fluxes?
- assuming HR profiles are needed:
- can we expect to measure them with sufficient accuracy?

- under what conditions can they be useful (including res.)?
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