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» Universal behavior of transmission for non-grey media
* New methods for approximating transmission in radiative transfer
 Implications for modeled vs. observed absorption in windows
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Beer’'s Law Is harder than it looks

Beer's Law: Atmospheric extinction causes exponential reduction in radiation fields:
I=1I,exp|-t]
T = optical depth
When we want to treat radiation over a range of wavelengths, Beer's law becomes:
I= JII[, exp[-7,|dA
7, = spectral optical depth
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. The solar and infrared spectra exhibit variations in extinction,
Collins et al, 2006 optical depth, and heating rates of >10 orders of magnitude. ARM Workshop
9 Jan. 2007




Radiative transfer using k-band theory
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* In correlated-k codes, the absorption coefficients are sorted by magnitude.

» The transmission integral should be much easier to approximate in this sorted form.
* Yet classical approximation methods may not be suitable.

» Are there physically and mathematically optimal methods for approximation?
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Methods for representing transmission in AOGCMs

Existing Methods:

Classical numerical quadrature
Empirical parameter estimation

Exponential Sum Fitting of
Transmission (ESFT)

More exotic methods from signal-
processing theory

These methods lack:

Practical error estimates
Guaranteed accuracy for all paths
Link between order & accuracy
Guarantee of global optimality

Continuous approximations over a range
of atmospheric conditions

Our constructive method provides:

Formal error estimates

Absolute accuracy for all paths
Theory for order and accuracy
Globally optimal solutions
Mathematical continuity

New insights into radiative processes
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Error bounds on transmission approximation

Let
£ =chosen limit on error in transmission
u = path length through atmospheric medium
T (1) = exact transmission

T (u) = approximation to transmission

The error in the approximation is

E)=|Tu)-T )

The basic requirement is:

Eu)<e for all path lengths u
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Error bounds on weak and strong transmission

Divide the k-distribution integral into intervals:

T,(w) --- Ty(u
T@w=YTwdg | 1 ): —
g, --- 0Og,
@)=Y Twdg, | () ;T“‘(”);
- g, --- Og,

The error in the approximation for each interval is:

E.(u) = |T,) ~ T, (w)
Assume that the error in each interval obeys:
E.(u)<e forall path lengths u

Then we satisfy our global requirement since

E) < ZE,.(u)5gi =€
i=1
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Variation of transmission with path length

The exact and approximate transmissions are: 0.0100 . ' ' ' ' '
T.(u) = exp|—, (w)u] i Weak line limit High
T.(u) = exp[—K u] K,(0)F _ <f W
where
K, (u) = effective extinction coefficient :ﬁ 0.0010k Vedium 1
K, = approximate extinction coefficient < \ \ :
One can prove for each interval that: ' Ki(Umoz) = K(9) \A '
 K,(u) is a decreasing function of u Ki(oo)} - - = ow i
« Foru=0, x,(0) is the average extinction 0.0001 o = v = 5
10 10 10 10 10 10 10
» Foru— oo, K,(o0) is the minimum extinction Path length u

Optimal choices for k., follow from these properties.
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Relationship of specific extinction and error
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Variation of error with path length

u
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Basic equations for extinction and interval width

Suppose we require the maximal errors obey:

E@,)=¢€
E@)=¢

This gives two equations in two unknowns:
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T(u)

Approximation for Near-IR H,O Transmission
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Implications for enhanced shortwave absorption

AOGCMs tend to systematically overestimate the surface insolation.

Absorbed Radiation (W/m?)

Global Mean Surface Insolation
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“Anomalous” absorption in atmospheric windows

* Absorption is underestimated for path lengths below a threshold value.

» This underestimation is also typical of other methods for radiative transfer.

» The threshold path length increases with decreasing absorption.

* This implies that models systemically underestimate absorption
in atmospheric “windows” where extinction is low.
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Summary

There are “universal” properties of Beer’s law:
— The effective extinction is bounded above and below.
— The effective extinction decreases with increasing path length.
— Langley plots of non-grey media are convex upward.

These properties lead to new transmission approximations:
— Itis possible to bound the absolute error for any path length
— The only free parameter is the error bound.
— The error characteristics are mathematically grounded.

Simple approximations must underestimate window absorption.

These methods could lead to new, more robust, radiative transfer.
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